Convoluted Fractional Poisson Process
نویسندگان
چکیده
In this paper, we introduce and study a convoluted version of the time fractional Poisson process by taking discrete convolution with respect to space variable in system differential equations that governs its state probabilities. We call introduced as (CFPP). The explicit expression for Laplace transform probabilities are obtained whose inversion yields one-dimensional distribution. Some statistical properties such probability generating function, moment moments etc. obtained. A special case CFPP, namely, (CPP) is studied time-changed subordination relationships CFPP discussed. It shown CPP L\'evy using which long-range dependence property established. Moreover, show increments exhibits short-range property.
منابع مشابه
Fractional Poisson Process
For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...
متن کاملFull characterization of the fractional Poisson process
The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and indep...
متن کاملThe Fractional Poisson Process and the Inverse Stable Subordinator
The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two mai...
متن کاملOn the Fractional Poisson Process and the Discretized Stable Subordinator
We consider the renewal counting number process N = N(t) as a forward march over the non-negative integers with independent identically distributed waiting times. We embed the values of the counting numbers N in a “pseudo-spatial” non-negative half-line x ≥ 0 and observe that for physical time likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to both variables x and t. Ap...
متن کاملFractional Poisson Fields
This paper considers random balls in a D-dimensional Euclidean space whose centers are prescribed by a homogeneous Poisson point process and whose radii are prescribed by a specific power law. A random field is constructed by counting the number of covering balls at each point. Even though it is not Gaussian, this field shares the same covariance function as the fractional Brownian field (fBf)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ALEA-Latin American Journal of Probability and Mathematical Statistics
سال: 2021
ISSN: ['1980-0436']
DOI: https://doi.org/10.30757/alea.v18-46